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Steep forced water waves generated by moving a rectangular tank are investigated
both experimentally and numerically. Our main focus is on energetic events generated
by two different types of external forcing. Horizontal motions are arranged to give
wave impact on the sidewall. Steep standing waves forced by vertical acceleration
can result in spectacular breaking modes similar to, and more energetic than, those
reported by Jiang, Perlin & Schultz (1998, hereinafter J98). Among them we find thin
sheets derived from sharp-crested waves, (‘mode A’ of J98) and the ‘flat-topped’ crest or
‘table-top’ breaker (‘mode B’ of J98). We report here on experimental observations of
‘table-top’ breakers showing remarkably long periods of free fall motion. Previously
such breakers have only been observed in numerical computations. Both types of
breakers often thin as they fall to give thin vertical sheets of water whose downward
motion ends in either a small depression and a continuing smooth surface, or air
entrainment to appreciable depths. Experimental results are compared graphically
with numerical results of two theoretical models. One is an extended set of Boussinesq
equations following Wei et al. (1995), which are successful up to wave slopes of O(1).
The other numerical comparison is with a fully nonlinear irrotational flow solver
(Dold 1992) which can follow the waves to breaking.

1. Introduction

Violent water free-surface motions under gravity are a concern for many different
human activities. In the context of coastal engineering, the impact of steep water
waves can result in damage or collapse of structures. In particular, failure of vertical
breakwaters and coastal defences has led to much attention being given to the
pressure distribution which occurs when steep storm waves meet sea walls (e.g.
Chan 1994; Zhang, Yue & Tanizawa 1996). Both experimental (Hattori, Arami &
Yui 1994) and theoretical (Cooker & Peregrine 1992) studies have highlighted the
fundamental role of the very large impact pressures which are impulsively exerted
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on sea walls. There are also circumstances in which the effect of upward impact of
a wave beneath a rigid horizontal surface needs to be estimated. This is primarily
related to the design of offshore oil rigs in which platform decks may be subject to
slamming due to particularly high waves such as freak waves. Experimental work has
focused on measurements of wave-induced vertical forces (e.g. Suchithra & Koola
1995). Relatively little theoretical study has been made of the hydrodynamics of
upward impact on horizontal surfaces (e.g. Wood & Peregrine 1996).

For industrial applications, the importance of the stability of a vehicle or vessel
transporting liquids in partially full tanks has led to the need for understanding the
strong and violent liquid motion inside confined spaces (Abramson 1966). We use
‘strong’ to refer to O(g) water accelerations, ‘violent’ to accelerations much greater
than g. Tank acceleration may give rise to two very different types of responses which
often coexist: a violent brief impact of the liquid on the container wall and large-
amplitude sloshing motions. Violent impacts induce very large peak pressures which
can be analysed by means of the pressure-impulse theory (Cooker & Peregrine 1995;
Wood & Peregrine 1996). After the initial stages of liquid acceleration/deceleration a
long-lasting sloshing motion induces moderate-to-large pressures on the tank walls.
Interaction of lengthwise and spanwise waves generated by periodic and quasi-
periodic parametrically forced sloshing in a rectangular channel have been studied
experimentally by Underhill, Lichter & Bernoff (1991). Ye & Birk (1994) and Ye
(1990) report on very high pressures inside a partially filled tank in the shape of a
horizontal circular cylinder. The water motion is forced by an impulse on the end
of the tank. Recently Faltinsen et al. (2000) investigated the nonlinear sloshing in
a rectangular tank using modal analysis and compared results of their model to
steady-state solutions and experimental results.

An important characteristic of sloshing motions in a tank is the generation of
patterns of steep standing waves. These may be induced by the instabilities of a
parametrically driven liquid surface. For example, when a container of liquid is subject
to vertical sinusoidal oscillations, the free surface becomes unstable at a critical driving
frequency and gives rise to standing waves. These are known as ‘Faraday waves’ and
have been extensively investigated for weak forcing in the last two decades (e.g. the
review paper by Miles & Henderson 1990). More recently attention has been paid
to understanding the dynamics of steep and breaking Faraday waves. For example
Jiang, Perlin & Schutz (1998, hereinafter referred to as J98) describes experiments
with sufficiently large forcing for breaking to occur in three recurrent modes. Among
these are flat crests which break and which we call a ‘table-top’ breaking wave (‘mode
B’ of J98). Drop ejection from the crests of waves has been investigated by Goodridge,
Hentschel & Lathrop (1999) who derived some statistical characteristics of ejections.
Another approach to standing waves is to consider waves reflected at a vertical wall.
Such experiments described by Longuet-Higgins & Drazen (2002) also show evidence
of a three-period crest variation, with sharp and flat crests.

Since the development of numerical methods to model steep and overturning
waves, initially by Longuet-Higgins & Cokelet (1976), there have been a variety of
computations of standing waves. Mercer & Roberts (1992, 1994) were the first to
accurately model periodic steep two-dimensional standing waves. They also found
that very steep standing waves on deep water are typically unstable to subharmonic
perturbations via a sideband-type instability. More commonly, initial conditions
related to those appropriate for linear standing waves, but with greater energy, have
been used to follow the evolution of very steep waves. Most of this work has been
reported in conferences, theses, or internal reports, e.g. Mclver & Peregrine (1981),
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Anderson, Diver & Peregrine (1990) and Topliss (1994). More recently results for
such extreme standing waves on deep water have been presented by Longuet-Higgins
(2000, 2001) and Longuet-Higgins & Dommermuth (2001a,b). These computations
show energetic events with steep and narrow jets and wider ‘table-top’ crests.
However, a general characterization of these nearly breaking and breaking standing
waves has not been developed. Their connection with similar energetic waves in a
moving container is only partially described in the literature and development of the
connection between experiment and computation is one of the aims of this work.

Experimental observations of sloshing and steep Faraday waves generated in a
rectangular tank of dimensions 1480 x 400 x 750 mm*® (length x width x height) are
reported. The standing waves of the present study are significantly larger than the
waves described in J98. The experiments were carried out at the University of Bristol
in 1996 and have previously only been described in a very brief internal report
(Brocchini, Peregrine & Thais 1997). Unlike most previous studies we do not aim
to investigate time-periodic water motion. Although sinusoidal forcing is used, it is
sufficiently strong to give rapid growth of waves. In this paper we present results from
video recordings that show growth of waves to their maximum steepness. Aspects
such as breaking and splashing are left for later study. This limitation is chosen so
that we can also present numerical studies of the same motions.

The relatively large scale and short duration of our experiments mean that we can
use classical water wave modelling with irrotational flow, neglecting the effects of air,
viscosity and surface tension. For such two-dimensional flows in a limited domain the
natural approach is to use boundary-integral computational methods. However, we
also use an extended set of Boussinesq equations (Wei et al. 1995), for three reasons.

(a) These, essentially long wave, equations have been extended in recent years to
model a wider range of waves and have previously only been compared with travelling
waves.

(b) Boussinesq equations give much greater scope for numerical modelling of
large two-dimensional domains and three-dimensional wave fields. Boundary-integral
methods are still too computationally demanding for practical three-dimensional
applications.

(¢) For forcing by horizontal tank motions it is easier for us to model the gentle

initial motion with Boussinesq equations than to make the appropriate modifications
to our boundary-integral program.
Thus we report comparisons with both Boussinesq and boundary-integral com-
putations that reach the limits of their applicability. Sample boundary-integral
computations of features where we could not make direct comparisons with exper-
iment are presented. These are graphical comparisons. We do not attempt careful
checks on their ‘validity’ since for irrotational flow this should be done by comparison
with accurate solutions rather than with experiments. We note that Tilman (1993)
made an extensive (>500 periods), and successful, comparison for periodic standing
waves with essentially the same boundary-integral program as used here.

The experimental setup is described in § 2, and the experimental results are discussed
in §3. The Boussinesq model is developed in §4. Boundary conditions at the tank
walls taking the horizontal acceleration into account are derived, and a test of the
model with standing waves (no external forcing) is presented. In § 5 numerical results
for the free-surface elevation and pressure are compared to experimental results
for an experiment with horizontal shaking. Numerical results for an experiment with
vertical shaking are presented in § 6. In this section we also present simulations carried
out with a fully nonlinear boundary-integral solver, both as a continuation of the
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FIGURE 1. Sketch of the experimental setup (top view).

results of the Boussinesq solver and as sample computations for appropriate initial
conditions. The continuation from the Boussinesq solver computations compares well
with the experimental results. The sample computations show high table-top waves. A
discussion of the findings of both experimental and numerical investigations is given
in §7.

2. Experimental setup

In this section a brief overview is given of the equipment and the methodology
used during the experimental investigation.

2.1. The experimental equipment

In the experiments a rectangular, narrow, glass tank was subjected to either horizontal
or vertical motion, by using the Earthquake Shaking Table Facility of the University
of Bristol’s Civil Engineering Department (figure 1). The shaking table consists
of a 3x3m? cast aluminium platform with active control of all six degrees of
freedom of motion (i.e. the three translational modes and the roll, pitch and yaw
rotational components). In the experiments described here only translational motion,
in the vertical and one horizontal direction, was used. A wide range of operational
frequencies (0 < f < 100 Hz) can be used (see e.g. Mir & Taylor 1995).

A glass and steel tank of internal dimensions 1480 x 400 x 750 mm?® (length x
width x height) was fixed on the shaking table, so that the horizontal shaking was
parallel to the long side of the tank (x-direction). The tank was also given vertical
shaking (z-direction). We used a sealed tank in order to protect the facility from the
water.

The experiments were recorded by two stationary video cameras: one regular-speed
camera (25 frames per second) and one high-speed camera (200 frames per second).
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FIGURE 2. Typical examples of the driving signals used in the experiments (normalized).
(a) Example of a type ‘H’ signal (experiment H10). (») Example of a type ‘V’ signal (experiment
V21). Their main generation characteristics are reported in table 1.

The latter was used in order to better capture flow features occurring at small time
scales at the left-hand tank wall. The cameras were sufficiently far from the tank that
lens distortions were negligible. All measurements and comparisons are taken on the
front face of the tank. Data were also collected from pressure transducers fitted into
the left-hand tank wall, but little of this data proved to be satisfactory. A red LED
which switched on at the start of each shaking sequence was fitted at the base of the
tank, allowing time synchronization between the regular-speed camera and the data
acquiring computer.

2.2. The driving signals

Four different signals were created to generate the shaking of the table. Of these only
two are reported here. The signals of type ‘H’ generate horizontal motions and signals
of type ‘V’ drive a horizontal motion followed by a vertical motion. Typical examples
are illustrated in figure 2. Table 1 reports characteristics of the driving signals of
each type for examples illustrated in this paper. Ty, denotes the period of the wave
mode excited, which is derived from linear theory as noted below. To obtain the
physical displacement of the tank in centimetres, the numbers on the plots should be
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Name h (m) Tiin (S) t1 (s) 1 (s) 13 (s) fend (S) At Riact Scale, Scale,

H10 0.155 2.443 2.0 6.21 — — 025 —6.0 2.0 —
Vo5 0.400 0.800 2.0 2.40 8.0 8.4 — — 0.5 3.0
Vi1 0.200 0.860 2.5 3.52 10.0 104 — — 1.0 2.0
V21 0.302 0.812 24 2.44 10.0 104 — — 1.0 1.0

TaBLE 1. Generation characteristics of signals illustrated on figure 2.

multiplied by the scaling factors in the last two columns of the table. On the basis
of these model signals, a large number of tests were performed by changing either
the still water depth &, or the amplitude of the signal. The different test cases were
labelled by the signal type (‘H’ or ‘V’) followed by a progressive run number. For
example, test H10 is the 10th experiment generated with a signal of type ‘H’.

For the experiments involving horizontal shaking only, linear wave modes with
half a wavelength in the tank were excited. The shaking frequency was determined
as the resonant linear wave frequency for the chosen still water depth and wave
mode. Vertically forced standing waves were excited in the mode having three half-
wavelengths in the tank. The vertical shaking frequency was twice the linear wave
frequency of this mode for the water depth chosen in order to excite parametric
resonance (Benjamin & Ursell 1954).

2.2.1. Signal type ‘H’: horizontal oscillation plus a push

In this motion horizontal oscillation in the x-direction was followed, after an
interval, by a longer push introduced to enhance wave impact on the endwall of the
tank. The amplitude of the sinusoidal motion builds up from zero to one, reached at
time ;. At time #, the tank is moved to the position R, in an exponentially decaying
motion of time scale At. The tank motion effectively stops, and if the timing is
appropriate, a violent wave impact may occur on the wall in a fixed tank. Figure 2(a)
shows the specific driving used for test H10 (normalized) as an example of a type ‘H’
signal.

2.2.2. Signal type ‘V’: horizontal then vertical oscillation

This signal was designed to generate standing waves forced by vertical oscillation. It
generates a mixed horizontal and vertical motion. The wave tank is initially oscillated
horizontally a few times and, subsequently, oscillated in the vertical direction. This
mixed signal is useful, as the initial still water condition is not suitable for obtaining
deterministic Faraday waves. The initial horizontal motion is used to produce a small
perturbation to the flat still water surface that provides the ‘seed’ for amplification by
the vertical forcing. An example of the driving signals is given on figure 2(b), where the
normalized displacements in both x- and z-directions are shown for experiment V21.
Horizontal oscillation is kept constant until time #, then its amplitude is decreased
linearly to zero at time f, when the vertical motion is impulsively started. This motion
is then linearly reduced to a zero amplitude in the time span t3 <t < fe,q. After this
time the waves evolve in a stationary tank. Note that the forcing frequency is doubled
for the vertical motion. The forcing in these examples is strong. Its simplest measure
is the maximum acceleration input through the driving signal:

e.g. V05:0.75g. V11: 0.44g. V21: 0.24g.
The measured accelerations were slightly lower, see for example figure 14.
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3. A qualitative analysis of experimental observations

The discussion of the experimental observations is based upon a few specific tests
which highlight characteristic flow features. We divide the discussion into horizontally
and vertically driven shaking, since the typical manifestations differ accordingly.

3.1. Horizontal shaking

For the horizontal test cases we used the high-speed video camera in conjunction
with the regular-speed video camera to visualize any rapid surface motions which
occur on time scales of some milliseconds. For test H10 which is reported here, the
still water depth in the tank was 2 =155 mm. The relatively low water depth is crucial
for obtaining clean visual recordings: no water sheets reach the lid of the tank and
no spray and droplets are generated which could disturb the free water surface. The
initial low-amplitude sloshing soon developed into a solitary wave propagating back
and forth, agreeing with the observations of Chester & Bones (1968) and hence not
detailed here.

Figure 3 shows a sequence of snapshots taken by the regular-speed video camera to
show the interaction of a steep wave with the left-hand sidewall of the tank. During
the impact with the wall a thin sheet of water is generated and pushed upwards by
the wave. In these conditions features of the interaction of the water with the tank
walls are best captured by the high-speed video camera, and are shown in figure 4.
The wave behaviour is similar for other cases, such as for the same wave when after
reflection it meets the right-hand wall.

As may be seen in both figures 3 and 4, the wave drives a thin sheet of fluid up
the wall. The bulk of the wave is reflected before the sheet descends and the crest
moves away from the wall. The jet is then in free fall, and is entirely independent of
the wave that generated it. As it accelerates downward it forms a depression on the
surface. With jets that reach as high as those in these experiments, the depression
becomes so deep that a considerable amount of air is entrained. The water initially
displaced by the falling jet then falls back towards the wall trapping more air and
at the same time forming a small short second reflected wave. An almost identical
sequence is seen later when the almost-solitary wave reaches the right-hand wall. A
similar depression formed at the end of a falling jet from a ‘free’ crest may also be
seen in frame 14 of figure 5 at t =5.36s.

This behaviour of the falling jet is virtually identical to the impact of a finite
falling jet in the absence of a wave, which is well-documented by experiment and
computations in Zhu, Oguz & Prosperetti (2000). There is also some similarity
with air entrainment by steady two-dimensional (Cummings & Chanson 1999) and
three-dimensional jets (Ervine & Falvey 1987). The same type of motion modelled
numerically from ‘standing wave’ initial conditions is described well in Longuet-
Higgins (2000, 2001) and Longuet-Higgins & Dommermuth (2001a, ).

3.2. Vertical forcing

The most interesting free-surface features of steep standing waves generated by
vertical oscillations of the tank are modes of incipient breaking. The visual analysis
relies only on regular-speed video camera images, as there is no special need for
resolution at higher frequencies.

Figure 5 shows a sequence of video snapshots for the test case VO5. The sequence
shows the generation of sharp-crested waves followed by flat-topped waves. Times
for each snapshot are given in the upper right corner of each frame. For this case the
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FiGure 3. Horizontal oscillation. Sequence of snapshots taken by a regular-speed video
camera (25 frames per second). Test case H10.
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FIGURE 4. Horizontal oscillation. Test case H10 (same as in figure 3). From top to bottom
and from left to right a time sequence of snapshots taken by a high-speed video camera (200
frames per second).

still water depth in the tank was 7 =400 mm. The process of steepening of successive
wave crests can be observed by comparing the first two frames of figure 5.

Although the sharp crest in frame 2 of figure 5 is very steep, and appears to retain
its identity as it falls through to frame 5, it does not form any localized depression,
although it trails a very thin sheet of water that breaks up into drops. However, the
next crest to rise is more energetic, and although slightly modified by touching the top
of the tank, frame 14 (r = 5.36 s) shows that at the end of its fall a depression is created.

Frames 7 and 8 of figure 5 (t =5.04s and 5.12s) show the early stages of what is
becoming a flat-topped crest. The evolution of the flat-topped crest, which we refer to
as a ‘table-top’ shape, is seen in the final eight frames of figure 5, where the process is
illustrated frame by frame. The ‘table top’ we see here is associated with a much more
energetic free-surface motion than any of the ‘mode B’ breakers reported by J98.
The flat-topped shape is developed early in the upward motion and on the twelfth
frame of figure 5 at +=5.28s, the crest sides are almost vertical below the really
flat top (hence the name ‘table top’). The final four frames show the transition from
upward to downward motion. Careful examination of the video shows that this crest
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FIGURE 5. See facing page for caption.

just misses touching the top of the tank, whereas the other flat-topped crest, moving
up and down the left-hand wall, does just touch the top. We here observe that the
distance between the sides decreases slightly, thus resulting in a slight ‘thinning’ of
the wave profile. The thinning is quantified by measuring the thinnest width of the
profiles for r =5.28s and ¢ =5.44s. The widths measured are marked by horizontal
lines on the images and we find that the width reduces by 12% between the two
instants. Thinning of both sharp and flat-topped crests is common in our experiments
and justifies further investigations.

The surface of the ‘table-top’ wave is roughened from its inception since the previous
pair of sharp crests touch the roof (figure 5 frames 6 and 7) and water drops land
on this, the next crest to rise. It is noticeable that the roughness increases as the
crest nears its maximum elevation and then starts to fall. This increased roughness is
explained by considering figure 6. The displacement of the top of the crest is plotted
against time, and compared with a parabola, which would be obtained for a particle
in free fall. The result shows that a large portion of the crest motion is very close to
free fall for the time period from 5.12s to 5.56s as labelled in figure 5. This is almost
a whole period of the forcing (half the period of the excited wave). Thus if there is
any disturbance on the surface there is almost no restraint on its growth, should any
portion of the surface have velocities moving away from the bulk of the fluid. Hence
it is particularly easy for drops to form. While a free fall behaviour is expected close
to the instant of maximum crest elevation, the proximity to free fall for almost all of
the table-top crest’s evolution is remarkable.
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FIGURE 5. Vertical shaking. From top to bottom and from left to right a time sequence of
snapshots taken by a regular-speed video camera (25 frames per second). Test case VOS5.
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FIGURE 7. Vertical shaking, test case V11. From top to bottom and from left to right a time
sequence of snapshots taken by a regular-speed video camera (25 frames per second).

Figure 7 illustrates the evolution of a ‘table top’ for the test case V11 similar to that
of figure 5. In this case there is a lower initial still water depth of 2 =200 mm and there
are few disturbances due to previous fragmentation into water drops. The downward
motion of the wave is characterized by retaining the square shape of the crest with
almost vertical sides. In this case there continues to be less surface disturbance and
thinning of the crest is only observable in the last frames of the figure. Perhaps more
significantly this is a thinner crest than that illustrated in figure 5, and in frames 6
and 7 it is not so very different from the ‘type A’ crest of J98. This variation in width
of table-top crests demonstrates that there is almost certainly a continuum of shapes
between sharp crests and table-top crests. Unlike J98 where a three-fold periodic
variation of crest types was observed we see no systematic variation, except that the
first table-top crest always followed a steep sharp crest.
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In all the experiments we could see no sign of three-dimensional motion until the
surface commenced to break into droplets. Sometimes this was more pronounced, or
started first, near the walls.

4. A Boussinesq-type model for forced waves

In the following we present a modified Boussinesq-type model, capable of simulating
much of the wave motion in the accelerated tank.

Boussinesq models are depth-integrated models describing the inviscid flow of
an incompressible fluid with a free surface. They can be obtained by asymptotic
expansions from the shallow-water limit by assuming O(u?)= 0(8) < 1 (e.g. Mei
1983). Here u=2mho/Ly and § =ay/ ho are parameters which give a measure of the
dispersive and nonlinear effects respectively, with kg, Ly and a( being a typical water
depth, wave length scale and wave amplitude, respectively.

A number of modified Boussinesq models have been proposed in recent years,
with continuously improving linear dispersion and shoaling characteristics along with
other measures of the accuracy of the equations, see the review paper of Madsen
& Schiffer (1999) and also Gobbi, Kirby & Wei (2000) and Madsen, Bingham &
Liu (2002a). In the present study, we use the model of Wei et al. (1995), derived by
assuming 8§ = O(1), retaining all powers of § within the O(u?)-expansion. Thus for
long enough waves, the model takes full account of the nonlinearity.

4.1. Extension of the model to incorporate external acceleration

The forced waves are modelled in the non-inertial frame of reference which follows
the tank motion. This simplifies the modelling, since no moving boundaries have to be
considered. The movement of the tank, however, imposes additional apparent body
forces in the fluid domain, and we therefore need to modify the Boussinesq model to
take the acceleration into account.

We consider an infinitesimal element of fluid, subject to an external acceleration
b= (b1, by, b3), see figure 8. The acceleration is allowed to vary in time, b= b(z).
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A Cartesian coordinate system (x, y, z) is introduced, with the z-axis pointing upwards
from the still water level. The fluid velocity components are denoted U= (u, v, w),
the density and the pressure p and p respectively. We assume that the fluid is
incompressible and neglect any effects of viscosity, surface tension and turbulence.
Momentum conservation for an infinitesimal element of fluid gives the Euler equation
of motion:

u, + (u-Vvju =—V7p + b(z). 4.1)

Taking the curl of this equation gives the transport equation for vorticity
(w=V xu), which for a fluid element can be written as Dw/Dt =(w-V)u. Since
we impose no angular motion on the tank, the external forcing b(z) is uniform in
space and does not alter this result. Thus, since the vorticity is zero when the fluid is
at rest, the flow continues to be irrotational as long as the free surface remains simply
connected. Hence we may introduce a velocity potential ¢(X, ¢) such that u=Ve¢. On
substituting ¢ into (4.1) and integrating once in space, we obtain

6 + L(Vg) =—§ +bi() X + C(t), 4.2)

where X =(x, y, z) and C(¢) is an arbitrary function of time. We absorb this function
in the potential itself, since a time-dependent part of the potential does not change
the fluid velocities u=V¢. For b=(0, 0, —g), equation (4.2) simplifies to give the
usual Bernoulli equation.

We now change the notation such that V=(d/dx, d/dy) and u=(u, v), so that the
equations governing the fluid motion are,

V+¢.=0, —h<z<n, (4.3)

Vo-Vh+¢, =0, z=—h, (4.4)

(bi_b‘(x’y’ ’7)+% [(V¢)2+¢z2] :07 =n, (45)
77t+V¢'V77—¢z=0a i=n, (46)

describing the incompressibility of the flow, (4.3), and the impermeability of the bottom
and the free surface (4.4), (4.6). The dynamic free-surface boundary condition, (4.5),
formed from (4.2), imposes constant pressure at the free surface, chosen to be zero,
as the reference pressure. For b(f) =(0, 0, —g) these four equations are the basis for
the derivation of the model of Wei et al. (1995). Note that the external acceleration
b(z) only alters (4.5).

The equations of Wei et al. (1995) are derived by using an expansion of the velocity
potential from an arbitrary reference level z =Z(x, y). The expansion can be achieved
by first expanding from the bottom, utilizing the Laplace equation and the bottom
boundary condition

¢ =[pleen — (2 + W)Vh+ [Vl.op — 5(z + 1) [VPle + O(1?). (4.7)

Evaluating this equation at z = Z and subtracting the result obtained from (4.7) yields a
relation between ¢ and ¢ = [¢].—:, involving gradients of the potential at the bottom.
Within the p’-expansion, these gradients, however, can be consistently replaced by
the same gradients evaluated at an arbitrary z-level. Choosing this level to be z, the
expansion

$=9+ =2V (hV) + 5 =V’ + O(n?), (4.8)
is obtained. This expansion is used later to derive an expression for the fluid velocities
and pressure within the fluid.
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With the modified dynamic free-surface boundary condition, (4.5), the derivation
of Wei et al. (1995) is easily adapted for the case of accelerated motion. In the case
of only one horizontal dimension and constant depth the resulting equations are

e+ hil, + (nid)x + (o + 1) P14
+ ah*(Nily)e — Sh(n ) — (P he)e = O(u?),  (4.9)
ity — by — byn, + fily + ohlley — [(h+ 30)nily]
+ [akiie — (h+ In)nii] -+ [(h+0)a2] = 0(u). (@10

Here, the velocity variable adopted, i, is the horizontal velocity at z=2 and the
dimensionless parameter « is defined as

A AN 2
z 1/(z

The choice of @ governs the linear dispersion characteristics of the equations. For
a =—2/5, the squared dimensionless linear phase speed of the equations is the Padé
[2,2] approximant of the similar result for fully dispersive theory. In the present work,
however, we use the value @ =—0.39 as suggested by Nwogu (1993) to optimize the
phase velocity of linear waves. Note, for examples where 4 is a function of X this
means that 2 is also a function of X: we allow for this more general case in the
following analysis.

For an infinitesimal column of water stretching from the bottom to the free surface,
(4.9) and (4.10) state conservation of mass and momentum, respectively. Conservation
of mass is unaffected by the external acceleration, and therefore the new terms due to
the external forcing only enter the momentum equation. For b= (0, 0, —g) the model
simplifies to the one-dimensional constant-depth version of the model of Wei et al.
(1995).

4.2. Boundary conditions at the tank walls

In this study viscous effects are neglected, so we do not consider any boundary layer
effects at the walls, and we consider only two-dimensional, (x, z), motions. At the scale
of our experiments, we do not expect surface tension to be important, except at the
sharpest crests, and as in equations (4.9) and (4.10), we do not include surface tension
in the boundary conditions. The vertical forcing frequencies were chosen so that we
could compare motion at a sidewall with motion two thirds of the tank length away
from the wall. For ideal inviscid flow with no surface tension effects there should be
no difference. In the motion that develops before substantial splashing takes place,
figure 5 shows the largest discrepancies we have seen. Frames 7 and 8 of figure 5
show that the free crest touches the tank roof whereas the crest at the wall does not.
On the other hand, the converse is true for the next crest to arise, see the last frame of
figure 5. Since different sidewalls are involved in these two cases, it is difficult to make
any general statement other than that the effects of surface tension and boundary
layers are slight.

In the moving reference frame the endwalls of the tank are stationary, thus u =0
at the walls. Laplace’s equation for the potential implies

Uyy =—Ugg, (4.12)
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and at the vertical walls u =0 for all z. Thus (4.12) gives u,, =0=u,, at the walls,
and thus since these apply for all time we can use

U=l =U; =iy, =0, (4.13)

at the tank walls.

While the above boundary conditions for the velocity are identical to the
unaccelerated case, the usual zero-slope condition for the free-surface elevation at
vertical walls does not apply when external acceleration is present. An appropriate
boundary condition for n, can be found by considering the momentum balance at
the wall. We apply equation (4.10) at the wall and use boundary conditions (4.13) to
obtain an equation which can be solved for #,. The result is

C—by+(h+ ) (a2 — ity)

M +0(u), (4.14)

which together with the above consequences of u =0 defines the boundary conditions
used.

4.3. The numerical scheme

Equations (4.9) and (4.10) with boundary conditions (4.13) and (4.14) are solved using
the numerical scheme of Wei et al. (1995), first presented in Wei & Kirby (1995). The
spatial derivatives are expressed by finite-difference approximations on a uniform grid,
providing fourth-order accuracy for the non-dispersive terms. The time-integration
is performed using a fourth-order Adams—Bashforth—Moulton predictor—corrector
scheme. The boundary conditions are treated by the use of two additional ghost
points on the outer side of the tank walls. In order to avoid high-frequency numerical
instabilities which occurred for steep wave motion or strong forcing, a five-point
smoothing filter was applied when required. This and other smoothing filters are
described in Longuet-Higgins & Cokelet (1976) and Dold (1992).

4.4. Fluid velocity and pressure

The velocity field and pressure within the fluid can be reconstructed from the velocity
variable O and 7. The fluid velocity at the free surface is needed to transform a solution
from the Boussinesq solver to the irrotational flow solver (see §6.3), while we derive
an expression for the pressure to be able to compare numerical and experimental
pressure results in § 5.

The horizontal fluid velocity is obtained by calculating V¢ from (4.8):

Vo =V + ViV - (hV) + 2ViV3H
+ (2 —2)VV (hV$) + 1 (2> = )VV24 + O(u).  (4.15)
We evaluate this at z=2 to obtain a relation between V¢ and 0:
[Vol._. =0=V¢ + ViV-(hV¢) + 2ViV2h + O(u*). (4.16)

The last two terms on the right-hand side are of magnitude O(u?), thus giving the
relation V¢ =0 + O(u?). Hence, V¢ can be replaced by 0 in all the terms of O(u?)
within the accuracy of the model derivation. Substitution of (4.16) in (4.15) yields

u=0+(2—2)VV-(h0) + 12> — Z)VV- 0 + O(u*). (4.17)
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The vertical velocity is found by calculating the z-derivative of (4.8) to be
w=—V-(h0) —zV-0 + O(u*). (4.18)

The pressure within the fluid can be derived from the modified Bernoulli
equation (4.2) which, after absorbing C(¢) in the velocity potential, gives

b + % —bex+ 1 [(V) + 4] =0. (4.19)
This is evaluated at z =7 and subtracted from (4.19) to give
S =bs =)+ (G =) + 5 (V) = (V) +6 — 6)). (4.20)

where the tilde indicates values at the free surface for the same values of (x, y, 7).
Substitution of (4.8), (4.17) and (4.18) into the above equation yields

% =—b3(n —2) —(n —2)[V*(hQ,) 4+ (0- V)V - (hQ) — (V- Q)V - (h0)]
— 1 =ZA)[V-0, +(0-V)(V-0) = (V-0))] + O(n*), (4.21)

where, again we have used V¢ = 0 + O(u?). For one horizontal dimension and uniform
depth (4.17), (4.18) and (4.21) reduce to

w =i+ [ 2h+ 1E = )] e+ O, (4.22)
w = —(z + h)ii, + O(u?), (4.23)
b= b =) = (1= 407 =) (s + il — ) + O(). (424)

4.5. A test on standing waves

As a first test of the model’s ability to adequately represent steep standing waves we
made a simulation using accurate periodic standing wave data from D. H. Smith and
A. J. Roberts (1995, private communication) for the initial condition. The method of
producing these data is described in Mercer & Roberts (1992, 1994).

The standing wave profile used in the present test is calculated for a dimensionless
wavelength of L/h=2m/0.799. The wave height is (fmax — min)/ 2 =0.525 and
the maximum crest acceleration is w,/g =—0.30. The above mentioned smoothing
procedure was applied once in each period to prevent the growth of numerical
instabilities.

In each cycle, the profile having the deepest trough, and hence negligible fluid
velocity, was captured and the error measure

N
Z 1Mi — Minitial,i |
An= lle— (4.25)
Z |77initial,i |
i=1

was calculated. When using 81 inner points in the computational domain and a time
step of At =1.12 x 1072(h/g)'/?, this error was found to oscillate around a mean value
of 1.04 x 1072, as depicted in figure 9. This is an acceptable error and we explain the
deviation from the more accurate initial data by the absence of the O(u*)-terms in
the model. For the present test we have = kh =0.799, and therefore u* ~ 0.4, which
cannot be considered small. The envelope of the peaks in the error curve indicates
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FiGure 9. Difference between successive extreme standing wave profiles of the deepest trough
and accurate initial data. Points are plotted once per period so the connecting lines only show
the succession of points.

that a small modulation of the signal is present in the calculations. This is to be
expected, since the amplitudes of the higher bound harmonics of the fully nonlinear
standing wave profile used as initial condition do not match the amplitudes for a
stationary standing wave solution of the present wave model. Again, this is due to
the absent terms of O(u*).

5. Numerical results for horizontal shaking

In the following we present typical numerical results for horizontally accelerated
flows. The results are generated for the experiment labelled H10. The numerically
calculated free-surface profiles are compared with experimental data and an example
of a comparison between a measured and a computed pressure time series is also
presented.

5.1. Acceleration of the tank

For experiment H10, the driving signal is of type ‘H’ (see figure 2). The measured
acceleration of the tank is shown in figure 10. The acceleration was sampled 1000
times per second, but due to substantial noise in the signal measured, the present
curve is drawn by averaging the signal over a 200-point moving window.

To simulate the experiment, a signal modelling the acceleration of the tank was
constructed. Since the signal refers to the non-inertial moving frame of reference, it has
the opposite sign to the measured acceleration. Both the measured and numerically
imposed acceleration are shown in figure 10. The sinusoidal acceleration builds up
in the time interval t =[0;2] s and subsequently becomes sinusoidal with a constant
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FiGure 10. Horizontal tank acceleration for experiment H10: ---, measured; —, modelling
signal; —, alternative modelling signal. Modelling signals are multiplied by (—1).

amplitude. At r=5.9s the tank is pushed violently towards the left. This results in
the negative peak in the measured acceleration, immediately followed by positive
acceleration.

In the Boussinesq model, a model signal similar to the data shown was tried.
However, the strong accelerations related to the peak gave convergence problems for
the corrector scheme at the violent impact at the wall. Hence, a modified signal with
a broader representation of the peak for r =[5.90;6.60] s was used, see figure 10.

The impact on the tank velocity of the acceleration peak and the deceleration is
estimated from the data to be

tzero 6.6
AV1=/ adt=—2.1x10" ms™!, AV2=/ adt=43%x10"2 ms™!
=595 frero
where a is the averaged acceleration signal, and t,,, is the time value of the zero-
crossing of the acceleration after the peak. For the raw, unaveraged accelerations,
these measures deviate by less than 6%. For the model signal these values are AV| =
—2.0x10'ms™! and AV, =4.4x10"2ms™'. To quantify the effect of broadening
the peak acceleration, an even broader representation of the peak was tried. This
is shown as the thin line in figure 10 and has the same values of AV, and AV, as
the model signal used here. For these two signals, the surface profiles of figure 11
differed by less than 1.2%, measured as the mean absolute deviation between surface
elevations normalized by the undisturbed depth. The value of maximum run-up
during the impact with the wall differed by 1.4%. The results therefore seem to be
rather insensitive to the actual shape of the modelling signal, as long as AV; and AV,
are reasonably modelled.
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FiGURE 11. See facing page for caption.

In considering the maximum run-up, we are well beyond the range of validity of the
Boussinesq equations. Since the basic approximation is based on shallow water and
gentle slopes these equations cannot be expected to hold once the surface slope reaches
in. Nevertheless we have run the computations beyond that point and illustrate that
the result is poor. To simulate the experimental flow conditions, the Boussinesq model
was run using 102 grid points, a time step of 0.005s, and with smoothing applied
after each time step.

Computation with half the number of points gave essentially identical results until
run-up. On the coarse grid, a reduction of the smoothing frequency by a factor of
100 caused little change in the solution. The mean deviation of these results from the
results presented here is less than 1% of depth until run-up. The numerical solutions
with differing numbers of points and smoothing gave noticeably different results only
during and after the extreme run-up. For the results presented here, mass conservation
applied with an accuracy of 4 x 107 relative to the total amount of water in the tank.

5.2. Comparison of experimental and numerical results

In figure 11 a selection of 12 frames from the regular-speed video is shown. The images
cover the motion of the free water surface resulting from the push of the accelerating
table, beginning with the situation of maximal elevation at the right-hand tank wall,
and ending with the reflected wave generated after sloshing at the left-hand wall. On
top of the images the numerical solution of the Boussinesq model is plotted as a
dashed line. On most of the images, the free surface is seen as the region between
two darker lines, which represent the intersection of the free surface with the front
and back walls respectively. Numerical solutions are plotted in a coordinate system
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FIGURE 11. Comparison of numerical and experimental results, experiment H10 (Boussinesq
solver). The numerical free-surface elevation is plotted as a dashed line. Time increases from
top to bottom and from left to right. Time values are given in the upper right corner of each
image.

fixed to the front wall of the tank, and therefore the lower dark line is the target
when comparing the numerical results to the experimental profiles. For the present
experiment, the regular-speed video camera was centred horizontally, and its vertical
position was 200 mm above the tank floor with the tank in its rest position. This
corresponds to the point (x/h, z/h)=(4.7,1.3).

Generally, the agreement between the experimental and numerical results is very
good until the run up the wall. Comparing the second and third images of figure 11
(r=06.88s,7.245s), the wave loses height while travelling across the tank. On the
following images, the wave is seen to steepen as it approaches the wall. These variations
are probably due to the horizontal motion of the tank, creating waves longer than the
corresponding solitary wave. Long shallow water waves steepen, and when dispersive
effects are important they also increase in amplitude. The numerical prediction of the
free-surface position is very good until # =7.64 s when the model overpredicts the run-
up at the wall. A careful analysis of the images reveals that the experimental run-up
on the left wall is about n/h = 1.8 compared with a numerical run-up of n/h =2.5.
However, given our small-slope approximation and the near-vertical surface slope
at maximum run-up, the computed result is not very different from the experiment.
The effects of surface tension also influence the tip of the run-up in the experiment.
The results of Jervis & Peregrine (1996) indicate that there could be an experimental
shortfall of perhaps 0.12 due to surface tension in this case.
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FIGURE 12. Comparison of measured (- - -) and calculated (—) pressure, experiment H10
(Boussinesq solver).

On the other hand, when compared with the images of the reflected wave in figure 11
for t > 7.64 s, the Boussinesq model is seen to produce a wave which is too high and
characterized by a short, local crest. Although the numerical surface elevation has the
general overall shape of the experimental profiles, this wave crest is not observed in
the experimental data. As already indicated we believe these differences are mainly
due to the failure of the model’s gentle-slope approximation in the wave motion at
the wall. In addition, the downward jet observed in figure 4 is not reproduced by the
model.

5.3. Comparison of pressure measurements

During the experiment the pressure at the left-hand tank wall was measured using 8
pressure transducers mounted at different positions on the wall. Unfortunately, most
of the pressure measurements are of poor quality, and we therefore only present
results from a single transducer, positioned 26 mm above the bed at the middle of the
wall. This transducer gave reliable measurements. In figure 12 the measured pressure
is compared with the numerical results, obtained using equation (4.24). The numerical
prediction compares well with the experimental results. All the qualitative trends are
reproduced by the numerical results, even though small differences and a small phase
shift are observed. As expected, the largest differences are seen close to the peaks
of the pressure signal as the wave hits the wall. The double peak occurring at the
impact with the wall is normal for strong wave impacts, and represents the pressure
needed, first to accelerate the water up the wall and subsequently to slow down its
descent.
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FiGUure 13. Surface profiles of ‘standing waves’ at maximum elevation for a sequence of
different initial amplitudes for a cosine surface velocity distribution and initial uniform water
depth of h =1, L =2r (after Topliss 1994).

6. Numerical results for vertical shaking

In this section we present numerical results for the vertically forced experiments. As
a typical example of such numerical modelling we present results for the experiment
labelled V21 for which the water depth was 0.302 m. We present both the numerical
results obtained with the Boussinesq model and the results obtained by continuing
the calculations with a fully nonlinear irrotational flow solver.

“Table-top’ crests have already been found numerically in Bristol (e.g. Topliss 1994)
using a Cauchy boundary integral method for steep, unsteady two-dimensional waves
(Dold & Peregrine 1986; Dold 1992) with high-energy initial conditions. A set of
examples is shown in figure 13, where each curve represents the free surface at the
time of maximum elevation for a set of systematically differing initial conditions.

We also present results of sample computations with this fully nonlinear irrotational
flow solver in the last part of the section. Unlike the results of Topliss (1994), our
numerical ‘table-top” waves are obtained, like the experimental waves, with a varying
vertical acceleration field rather than large initial amplitudes of surface elevation and
velocity.

6.1. Acceleration of the tank

The driving signal for experiment V21 is of type ‘V’ (see figure 2), consisting of
a small horizontal shaking of the tank, followed by a vertically oscillating motion.
The acceleration measured is shown in figure 14, along with the acceleration used in
the numerical modelling. The accelerations were sampled with a time step of 0.02s,
and the signals shown here are averaged with a moving window of 3 points for the
horizontal accelerations and 2 points for the vertical acceleration. The signal used for
modelling is based on the analytical expressions for the driving signals, adjusted to
match the measured acceleration. A small peak followed by a decaying acceleration
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FIGURE 14. Tank accelerations for experiment V21: ---, measured; —, modelling signal.

is seen in the horizontal signal around ¢ =2.3s. This is due to the sudden stop of the
horizontal motion before the vertical motion begins. After the horizontal motion is
stopped, a small horizontal acceleration in phase with the vertical movement of the
tank is measured. This acceleration is regarded as spurious, induced by the vertical
motion on the horizontal accelerometer.

When simulating experiment V21, the Boussinesq solver was run with 102 grid
points and with a time step of 0.005s. Smoothing was applied after every 81 time
steps, corresponding to half the linear period of the wave mode in the tank. Results
with both half and twice as many points are very close, except for the final frames
after the approximations involved have become questionable.

6.2. Comparison of experimental and numerical results

In figure 15 fourteen images of the wave motion are shown with the corresponding
numerical solution plotted on top. The first seven images cover one half-period of
the motion between two instants of maximum crest elevation. The results of the
Boussinesq model compare very well with the experimental surface profiles.

The next half-period of motion is shown in images 7 to 13 of figure 15. The
waves are now much steeper and the motion more nonlinear. The Boussinesq model
still gives an acceptable prediction of the free-surface shape, though not as good
as in the previous half-period. The last image in the figure shows the free-surface
elevation at r =5.765s, one half-period later in the motion. The height of the standing
wave is now overpredicted. After this instant, the simulation broke down during the
downward motion of the wave crest at t =5.92s due to a numerical instability. The
overpredictions occur after waves reach maximum surface slopes around %n, when
the Boussinesq model is expected to have errors.
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6.3. Continuation of the computations with an irrotational flow solver

In order to improve the modelling of the steep forced waves, the computations of the
Boussinesq solver were extended by using a fully nonlinear irrotational flow solver.
We used the program of Dold & Peregrine (1986), see also Dold (1992). It is based
on using Cauchy’s integral theorem for solving Laplace’s equation, with high-order
spatial and temporal accuracy. The present implementation solves the flow problem
with periodic boundary conditions. The reader is referred to Dold (1992) for further
details. As with the Boussinesq solver, the vertical shaking of the tank was modelled
through a time-dependent acceleration field. The program was adapted accordingly,
keeping the high order of numerical approximations.

As a measure of the difference in computational efficiency of the two models, we
note that calculation of one period of the standing wave test of §4.5 using 64 points
took 14 CPU seconds on a Sun UltraSparc 2200 with the irrotational flow solver and
3 CPU seconds with the Boussinesq solver. This difference increases with the number
of spatial points, since the Boussinesq solver requires O(N) computational effort per
time step, while the irrotational flow solver requires O(N?), N being the number of
spatial discretization points.

The irrotational flow solver requires, as initial data, specification of the free surface
elevation and the velocity potential on the free surface. While the free-surface elevation
is directly available as one of the dependent variables of the Boussinesq model, the
potential at the free surface was estimated by evaluating the line integral

P(x, n(x)) = / V(. n(€))-(1,7'(§)) d& (6.1)

X0

where V (&, n(¢))=(u, w) is calculated from (4.22) and (4.23). To reduce the error
induced in this evaluation, the solution of the Boussinesq solver was taken at a time
of maximum surface elevation. For such instants, most of the wave energy is potential
energy, related to n(x), since the fluid velocity is near zero.

To continue the calculations for experiment V21, the solution of the Boussinesq
solver was transferred to the irrotational flow solver at t =2.84s. This is shortly after
the transition from horizontal to vertical shaking, thus providing a relatively gentle
initial wave profile. In both models 81 computational points were used to resolve
the tank length. To proceed beyond time ¢ =5.85s it proved necessary to introduce
smoothing of the solution. For the results shown here, a five-point smoothing formula
was applied after each time step. The influence of smoothing was investigated by
examining profiles of extreme elevation of t =5.36s and r =5.76s calculated with and
without smoothing. The largest deviation was a reduction of the free crest height of
2.5% for t =5.365s. The influence of grid spacing was tested by carrying out a similar
run with twice as many grid points. This run broke down at t = 6.83s. For the profile
of maximum crest elevation at t =6.60s, the largest deviation between the refined
run and the results presented here, occurred at the right-hand tank wall, where the
refined run predicted a crest height 3.9% greater.

The numerical results are compared to experimental observations beyond those of
figure 15 in figure 16. The first five frames show instants of maximum crest elevations,
while the last four frames depict the upward motion of the following crest, reaching
its maximum height at r =8.32s. The numerical solutions compare very well with
the experimental surface profiles. For r > 7.44 s near-breaking effects are observed at
the wave crest and trough in the experimental results. These effects are beyond the
scope of the numerical model, but still the wave heights are predicted well. In the last
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FIGURE 15. See facing page for caption.

four frames, surface disturbance around a flat-shaped crest can be seen. Although the
model does not capture the square shape of the crest accurately, the overall shape of
the wave is well modelled.

Here we are testing the limits of both the irrotational computation and the exper-
imental measurements. The computation has been extended by introducing smoothing,
which introduces slight errors, but prevents short grid-point-scale disturbances
upsetting the computation. Similarly, the water surface is also sensitive to small-scale
disturbances. Often these first appear in the boundary layer on the walls. Unfort-
unately, for these particular experiments, we have no oblique views to see the full
transverse extent of the surface disturbances.

6.4. Sample computations with vertical forcing

Numerical modelling of the ‘table-top’ waves observed experimentally was not possible
since all such waves were preceded by sharp wave crests which limited the continuation
of computations. Hence we present here sample computations with the irrotational
flow solver. Instead of pursuing a consistent reproduction of a given experiment, a
linear standing wave was used as initial condition for the irrotational flow solver, still
simulating the shaking of the tank through a time-dependent acceleration field. This
method of simulating ‘table-top’ waves provides a cleaner and faster numerical setup,
making parametric studies easier.

The experimental conditions of experiment VOS5 were used as the basis for the sample
computations to reproduce the experimental observations discussed in §3. Hence
for a depth of h =0.40m, and wavelength L = %Ltank =0.987 m the initial conditions

n(x)=ahcoskx, ¢(x,n(x))=0, 0<x<L, (6.2)
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FIGURE 15. Comparison of numerical and experimental results, experiment V21 (Boussinesq
solver). The numerical free-surface elevation is plotted as a dashed line. Time values are written
in the upper right corner of each image.

were used, where k =2n/L. The acceleration field was varied in time as

g(t)=go(1 + f sinwt), (6.3)

w being twice the linear angular frequency of the corresponding standing wave mode.
In the calculations neither smoothing nor surface tension was included. At the scale
investigated here, surface tension is not important until sharp corners are approached
and our numerical scheme fails. For a =0.3 and f =0.75 the result of a model run
is presented in figure 17, obtained with 80 computational points. The resulting wave
is seen to have the ‘table-top’ form observed experimentally. Figure 17(a) shows the
upward motion of the wave, beginning with the initial condition (6.2). The wave
reaches a ‘table-top’ shape early in its evolution, the top becoming perfectly flat and
the sides almost vertical at t =0.34s. On further upward motion corners develop, so
that the top of the profile is wider than the lower part. For the extreme profile the top
has a small depression in the middle. For this profile the maximum surface elevation
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FIGURE 16. Comparison of experimental results and numerical results of an irrotational flow
solver, experiment V21. The numerical free-surface elevation is plotted as a dashed line. Time
values are given in the upper right corner of each image.

1S max/ 7 = 0.88 and the height-to-thickness aspect ratio is 4.99, measured as the ratio
of Nmax — Mmin to the thinnest width of the profile.

At the transition to downward motion, the widening of the top continues, and
furthermore the sides of the ‘table top’ become thinner. While the top has an almost



Experimental and numerical investigation of steep forced water waves 245

1 1} (b)
zlh 0 0
-1 -1
0 1 2 0 1 2
x/h x/h

FIGURE 17. Free-surface elevation for a sample computation reflecting the experimental condi-
tions of experiment V05. (a) The upward motion for the time values r =0.01s, 0.04s, ..., 0.465s;
(b) the downward motion for the time values r =0.46s,0.495s,0.52s.
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Ficure 18. Upward and downward motion of a ‘table-top’ wave. (a) The upward motion
for t=0s,0.02s,...,0.44s; (b) the downward motion for the time values t=0.44s,
0.46s,...,0.70s.

constant level of elevation for r =0.43, 0.46 and 0.49 s, the sides are constantly moving
inwards. This process is continued in the downward motion, as can be seen for the
profile corresponding to t=0.52s. Stronger thinning processes of this type were
observed experimentally.

Computation of this example broke down shortly after the time of the last profile
shown. Thus, the complete downward motion of this ‘table-top’ wave could not be
followed. However for a lower wave with an initial profile height of a =0.27 and
forcing of f=0.63, using 80 computational points and five-point smoothing after
every time step, figure 18 was obtained. The upward motion of the wave is very
similar to that reported in figure 17, except for the reduced height. The profile of
maximum elevation does not show corners and the top of the profile does not have a
depression like in figure 18. Also, we see no thinning for this smaller wave. Additional
computations show that the lack of thinning is not due to the numerical smoothing
applied. The downward motion is interesting. The shape of the crest is almost
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unchanged as the wave height decreases, with the slight overhang diminishing rather
than leading to breaking. This is in agreement with the experimental observations
of §3. In particular, note that for irrotational flows time can be reversed and the
downward motion in figure 17 is remarkably similar to the upward motion in
figures 5.

7. Discussion and conclusion

Steep forced waves generated by moving a tank containing water have been studied
both experimentally and numerically.

Experimental observation of waves generated in a horizontally accelerated tank
were intended to reveal properties of the nature of violent wave impacts with water
accelerations much greater than g, see e.g. Cooker & Peregrine (1992), but limitations
of equipment meant that we only report on a strong wave impact here. Even so, this
involved the wave crest rising high up the wall, forming a thin sheet of water that
falls back down, creating a second pressure peak.

More striking observations have been achieved from forcing the wave motion with
vertical acceleration. The most unusual feature is what we call a ‘table-top’ breaker.
This is a flat-topped wave crest with almost vertical sides (a more energetic version
of the ‘mode B’ breaker reported by J98). These energetic waves are characterized by
sustaining a flat top through the rise and fall of the crest. For some of the ‘table-top’
breakers, we observe a thinning of the profile during the downward motion.

The more commonly seen steep sharp crests, ‘mode A’ of J98, are also evident. They
also tend towards thin sheets of water as they fall. These sheets can lead to bubble
entrainment, as with the initial motion of a jet directed towards the water surface,
or because they can break up into drops that entrain bubbles on impact. Our videos
show numerous other strong motions after the waves have broken, but reporting on
these is beyond the scope of the present study.

To simulate the experimental results, the Boussinesq model of Wei et al. (1995)
has been extended to include external acceleration. Boundary conditions taking the
external acceleration into account have also been developed. The model is easily
extended to three-dimensional motion. In all cases the Boussinesq model reproduces
the free-surface motions accurately until the wave surface slopes are close to unity.
After such steep waves occurred, wave crest amplitudes tended to be overpredicted.
Numerical surface profiles compare well with the experimental profiles up to values
of n as large as n =~ 0.6h. A comparison of experimental pressure measurements to
numerical results of the Boussinesq solver shows similar good agreement.

The numerical modelling was taken to and beyond the extremes of validity of
the model equations and of the numerical approximations. The Boussinesq-type
equations are attractive since they require less computation, which is very important
for extensions to three-dimensional waves. On the other hand, we note that a
substantial amount of smoothing was required, especially for the travelling waves
arising in H10. Further numerical schemes for these equations should be investigated.
Also, high-order Boussinesq models such as that of Madsen, Bingham & Schiffer
(2003b) could be chosen for a possible improvement of the accuracy and extension of
the physical simulation time.

We continued the modelling of the vertically forced water waves beyond the
applicability of the Boussinesq solver by using a fully nonlinear irrotational flow
solver: data obtained from the Boussinesq solver were transferred (in an early stage
of the experiment) to the irrotational flow solver, which ran until breakdown of
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the computations due to limited resolution of sharp features. The results of these
computations agree well with the experimental results.

Further interesting results have been obtained by carrying out sample computations
with a sinusoidal free-surface elevation as initial condition for the potential flow
solver with a time-varying vertical acceleration field. This generated ‘table-top’ waves
similar to those observed in experiments, which could not be directly modelled since
computations were limited by preceding sharp crests. For a smaller ‘table-top” wave,
the downward motion has also been followed, reproducing some experimental results,
in which the wave profile is seen to move vertically downward almost unchanged.
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